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ABSTRACT

Automatic Modulation Classification (AMC) is the classification of signals automati-
cally based on the type of modulation used to generate that signal. Many different approaches
for AMC have been proposed which are categorized as ’Decision Theoretic Approach’, ’Fea-
ture Based Approach’ and ’Deep Learning Based Approach’. Here, we have implemented
various types of classifiers for AMC which include likelihood based approach, deep learning
based approaches (LSTM and BiLSTM networks) and also using a Quantum Neural Network
(QNN). The likelihood based classifier and the QNN are restricted to classify only two types
of modulations, namely BPSK and QPSK due to various limitation of those approaches.
The deep learning based classifiers can classify 11 different modualtion types from their IQ
samples in RadioML2016.10A dataset.

Very poor classification accuracy is seen at lower SNR levels for all the implemented
models. The unrealistic requirement of perfect Channel State Information(CSI) in likelihood
based classifiers and the lack of computational power at present in QNN architectures make
them infeasible for real life use cases. The overall accuracy of 37.33%, 46.68%, 51.31%,
54.84% and 56.88% for LSTM, LSTM with attention, RadioML, Modified CNN, and the Bi-
LSTM models respectively were observed. Among all these DL based models, BILSTM with
attention layer achieved the highest accuracy of 84.48% (14dB) while retaining a comparable
average prediction time of 0.041 ms for a signal.

Only RNN and CNN based DL architectures were considered in this report for their
performance evaluation. Other architectures like vision transformers, encoder-decoder have
shown promising improvement in the classification accuracy. Implementation and compari-
son of such architectures can be one of the next steps. Furthermore, only number of layers
and number of nodes were considered for hyper-parameter tuning. More refined hyper-

parameter tuning can also be one of the next steps.

Keywords: Automatic Modulation Classification, Adaptive Modulation Scheme, Cognitive
Radio, Quantum Neural Network, RadioML
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1 INTRODUCTION

1.1. Background

Automatic modulation classification (AMC) in the adaptive modulation system serves
the purpose of identifying the modulation scheme mostly according to the channel condition
and the other parameters in the channel for the efficient transmission of the signal. The mod-
ulation classification problem arose in military applications for identifying adversary trans-
mitting units, preparing jamming signals, and recovering information from the intercepted
signals. Before the advent of AMC, the classification was done manually which required
domain experts to analyze the received signal. Later with the development in electronics and
considerable research works in the field of communications, the manual modulation is be-
ing replaced by automatic modulation classification which has now opened it to many other
applications. One of which was the Link Adaptation (LA) system which introduced AMC
to civilian use cases. LA creates an adaptive modulation scheme given multiple modulation
techniques and optimizes the transmission reliability and data rate through the adaptive selec-
tion of modulation schemes according to channel conditions. The transmitter changing the
modulation, required the receiver to identify the current modulation scheme to effectively get
the information. AMC solved this problem meanwhile saving the precious bandwidth in the
wireless system by omitting the overhead of transmission of extra modulation information.

In recent years, the field of IoT, smart technology, automated systems, efficient wire-
less communication and many more are highly evolving which results in a high require-
ment of advanced communication systems. This demands efficient allocation of network
resources using ideas like LA systems, intelligent radio systems including cognitive radio
and Software-Defined Radio (SDR); essentially making AMC the Swiss Army Kanife of the
communication systems in near future.

AMC problem has been approached using various techniques like Likelihood based
classifiers and Feature based ones. In recent years, the use of deep learning has gained
popularity to solve the problem of AMC, which facilitates the classification process without
any manual feature extraction process.

Deep learning techniques, which can automatically extract features, have been looked

at as probable approaches in the view of these considerations. AMC has been using these



techniques to automatically select the modulation classification and also to extract the fea-
tures for further processing for demodulation. To be more specific, Deep neural networks
(DNN) like Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN),
having multiple layers proved to be efficient in feature extraction. This improvement in per-
formance with DNN, techniques and the growing requirement of robust and highly efficient

communication systems is making a high demand in research of AMC.

1.2. Objectives

The general aim of this project is to explore and develop Automatic Modulation Clas-

sification approaches and evaluate their performances.The specific objectives are as follows:
1. To evaluate the various approaches towards the AMC problem.
2. To design and implement an Automatic Modulation Classifier.

3. To compare the performances of these implemented approaches.

1.3. Problem Statement

The requirement for a highly efficient, robust, and lightweight Automatic Modulation
Classifier has resulted in various approaches to the AMC problem. These various approaches
to this problem pose different sorts of benefits and pose various trade-offs. Therefore, in
this project, we aim to explore, implement and compare different approaches to this AMC

problem.



2 LITERATURE REVIEW

The prospect of increased usage of AMC in the near future has attracted many re-
searchers to this problem. Accuracy, Robustness, Computational Efficiency and Versatility
are said to be the essential characteristics of a successful design of AMC by Zhu and Nandi
in [1].

Even though AMC is a multidimensional problem, the approaches towards it can be
broadly classified into 2 groups; namely - Likelihood Based (LLB) Classification and Feature
Based (FB) Classification [2]. In case of LB classifiers, classification is done by a likelihood
function operating on the received signals. They were first introduced by Polydoros and Kim
in [3] to provide the optimal solution to the modulation-classification problem given a good
enough signal model and perfect Channel State Information (CSI). Over the years, these
classifiers went through different modifications and specifications but still suffer from large
computational time.

In contrast to LB classifiers, FB classifiers provide the benefit of reduced time com-
plexity. The FB approach introduces two significant steps: feature extraction and classi-
fication. Use of machine learning methodologies for the classification problem has been
exploited by many researchers using approaches like K-Nearest Neighbors, Support Vec-
tor Machines and Principal Component Analysis [4]. The problem such approaches face
is that the significant features are often left out including some time and frequency domain
information during feature extraction [5].

Recent approaches to neural networks involve the use of deep learning to learn the
features of signals to achieve better accuracy. Deep learning based techniques handle the
classification along with the feature extraction by themselves which has led to a significant
increase in the study of application of such approaches.

Authors of [6] have proposed and implemented a Convolutional Neural Network ar-
chitecture for modulation classification. They also compare the the CNN based architecture
with various other feature based methods and point out that deep learning based approaches
are also a viable approach for modulation classification.

A comprehensive study of various deep learning based approaches to the AMC prob-
lem can be found in [7]. The authors provide a detailed description of various approaches to

AMC along with their model architectures, reported accuracies and the current trend in ap-



proaches to tackling the AMC problem. Many approaches using simple feed forwards neural
networks, convolutional neural networks and recurrent neural networks are highlighted by
the authors. Most of the classifiers described were able to achieve high accuracies (> 90%)
at certain signal to noise ratios.

A LSTM based network with temporal attention for the AMC problem is described in
[8] where the authors classify signals under various noise conditions with Rayleigh fading
channels. The performance of the proposed classifier was comparable to that of LB classifiers
with perfect channel knowledge.

Authors of [9] have prepared a dataset for such modulation classification problem.
The dataset, named RadioML, was prepared in GNU Radio software, under various channel
conditions for a wide variety of modulation types. They have also highlighted the differences
in radio signal processing from other machine learning domains, namely the well structured
but very noisy data.

Quantum computers have been gaining popularity in the recent years, mainly due to
Shor’s Algorithm [10] for factoring numbers and Grover’s algorithm for database searching
[11]. Similarly, the possibilities of machine learning on quantum computers are also being
explored in the present. Various approaches for implementing quantum machine learning are
described in [12] and [13]. Authors in [14] have developed a software framework for quan-
tum machine learning which allows the design of hybrid quantum-classical neural networks
using Tensorflow. Furthermore, authors in [15] have proposed a way of performing classi-
fication on such quantum neural networks. The authors also give an example of performing

classification of handwritten digits using the quantum neural network.



3 THEORETICAL BACKGROUND

3.1. In-phase and Quadrature Signals

IQ signals stand for In-phase and Quadrature signal representations of a single signal
as two sinusoidal signals with the same frequency and a relative phase shift of 90 degrees. By
convention, the I signal is a cosine waveform, and the Q signal is a sine waveform. Any form
of modulation can be performed simply by varying the amplitude of I and Q signals and then
adding them together. This representation alone does not possess any significance but to-
gether can modulate the carrier signals, especially in the quadrature modulation. Quadrature
modulation refers to modulation that involves 1/Q signals. Quadrature phase-shift keying can
be obtained by adding I and Q carriers that have been individually multiplied, following the

incoming digital data, by +1 or —1.

3.2. Digital Modulation

In digital communication, the signals are converted into suitable form before transmis-
sion where certain parameters like amplitude, phase, and so on are changed as per require-
ment along with the insertion of additional data like synchronization bit, error correction
bits, delay, and so on. Modulation plays an important role in communication since proper
modulation is the key to efficient transmission. Modulation can be classified into various
types as per the nature of the carrier and message signal. Classification of modulation is

shown in Figure 3.1.
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Figure 3.1: Modulation Types

3.2.1. Constellation Diagrams

The graphical representation of a signal modulated by a different digital modulation
scheme, such as ASK, PSK, BPSK, QAM is known as a constellation diagram. It is a two-
dimensional scatter plot in a complex plane where I represents the real axis of the complex
plane and Q represents the imaginary axis. It represents the possible symbols that may be
selected by a given modulation scheme as points in the complex plane.

The angle of a point, measured counterclockwise from the horizontal axis, represents
the phase shift of the carrier wave from a reference phase. The distance of a point from the
origin represents a measure of the amplitude or power of the signal. The constellation plot

for 8-ary PSK is shown in Figure 3.2.
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Figure 3.2: Constellation plot for 8-ary PSK.

3.2.2. Phase Shift Keying (PSK)

PSK is a type of digital modulation that sends data by changing the phase of a constant
frequency reference signal (the carrier wave). Modulation is achieved by varying the sine and
cosine inputs at a specific time. It is the simplest modulation scheme that uses voltage levels
of a digital signal to change the phase in the transmitting sinusoidal which is demodulated

on the receiver side using a simple phase-locked loop system.

3.2.2.1. Binary Phase Shift Keying (BPSK)

BPSK is a two-phase PSK modulation technique where these two-phase levels are used
to represent 1’s and 0’s in the input signal or the messenger wave. The binary input sequence
is multiplied by the high-frequency carrier wave with the help of a Balanced Modulator
which outputs the high-frequency carrier wave with alternating phase-shifting(180°) with
respect to the input data. Since there are only two levels of phase-shifting BPSK is also
known as phase reversal keying or 2PSK.

The pair of signals s;(t) and sy(t) are represented using binary symbols 1 and O re-
spectively. Where 7}, is the bit duration and Ej is the transmitted signal energy per bit. The

constellation plot for BPSK is shown in Figure 3.3 [16].
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Figure 3.3: Constellation Plot for BPSK

3.2.2.2. Quadrature Phase Shift Keying (QPSK)

QPSK is similar to that of BPSK, but the phase-shifting takes place at 4 levels i.e 90°
shifts at a time. Hence the input sequence will have 4 different voltage levels. QPSK is one
bandwidth conserving modulation scheme which is well known for the efficient utilization
of channel bandwidth. The messaging symbols in QPSK are contained in the carrier phase.
The phase of the carrier takes on one of four equally spaced values such as 7/4, 37/4, 57/4,

and 77/4. The constellation plot for QPSK is shown in Figure 3.4 [16].

?10

Figure 3.4: Constellation Plot for QPSK



3.2.23. 8PSK

8 Phase-Shift Keying is a digital modulation technique that is also similar to BPSK
but with 8-level phase changes. To form of phase modulation with eight phase states located
at 0, 7, +/-(7w/4), +/-(w/2) and +/-(37/4) radians in the IQ plane hence each symbol carries

log,(8) = 3 bits of information.

3.2.3. Quadrature Amplitude Modulation (QAM)

QAM modulation uses two independently amplitude-modulated carrier signals i.e in-
phase carriers and quadrature-phase carriers. The two carrier waves of the same frequency
are out of phase with each other by 90°. The signal state in QAM is assigned with in-phase
and quadrature carriers thus making it flexible to utilize both amplitude and phase variations.
Though its high data capacity of carrying, efficient usage of bandwidth, QAM modulated

signals are more susceptible to noise as compared to PSK modulated signals.

3.2.4. Gaussian Frequency Shift Keying (GFSK)

In this modulation, pulse shaping is done prior to the modulation for smooth pulses
and limits modulation spectrum width as well as out of band spectrum. The baseband signal

is first passed through the Gaussian filter before modulation.

3.3. Analog Modulation

Analog modulation refers to the modulation of high-frequency carrier waves using
an analog signal. This modulation is used to transmit low-frequency signals such as TV
signals or audio signals. In this type of modulation, a bandpass channel is required where
it corresponds to the specified range of frequencies. These frequencies are transmitted over
a bandpass filter which allows certain frequencies to pass preventing signals at undesirable
frequencies. The type of analog modulation is based on the type of carrier signal property

and so there are mainly three kinds of analog modulations and are:
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1. Amplitude Modulation
2. Frequency Modulation

3. Phase Modulation

3.3.1. Double Sideband Modulation

Double Sideband Modulation is the modulation in which modulated output signal con-
tains two sidebands of frequencies. A type of DSB, called binary phase-shift keying, is used
for digital telemetry. Amplitude modulation (AM) is similar to DSB but DSB has the advan-
tage of permitting a simpler demodulator, the envelope detector. A message signal z(¢) can
be DSB modulated onto a carrier with simple multiplication and a DSB modulated carrier is

normally demodulated with a synchronous detector.

3.3.2. Single side band modulation

Usually, the amplitude modulated signal consists of two reductant sideband signals,
but as the name suggests, single-sideband signals use only one of these sidebands. Since the
bandwidth of such signals occupies lesser spectrum space than double sideband, more trans-
mission signals are allowed. Transmission power is reduced due to the narrower bandwidth
high power signals can be transmitted due to the half uses of the bandwidth of the same AM

signal.

3.3.3. Continuous Phase Shift Keying (CPFSK)

CPFSK is a type of traditional frequency shift keyed modulation where the signal is
constrained to maintain continuous phase at its symbol time boundaries as its name suggests.
This modulation type has noted benefits since this constraint offers better error rate perfor-
mance as well as signal spectrum containment. Due to its promising modulation format that
allows compact spectrum, as well as its receiver sensitivity, which can be improved with a

differential detection, it is considered as an important modulation type.
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3.3.4. Wideband Frequency Modulation (WBFM)

Widely used for FM broadcasting, Wide-band frequency modulation is preferred when
signal quality is required over the spectrum efficiency with the greater expense at spectrum
usage. For large values of modulation index my , the FM wave ideally contains the carrier
and an infinite number of sidebands located symmetrically around the carrier. Such an FM
wave has infinite bandwidth. In this modulation technique, the music and speech are trans-
mitted with up to 75k H =z deviation from the center frequency. It also allows carrying the

audio signal up to 20kHz and sub-carriers up to 92k H z.

3.3.5. Pulse Amplitude Modulation (PAM)

PAM is the simplest analog modulation scheme where the train of pulse carrier is
modulated using the analog modulating signal. Here the modulated signal is a train pulse of
the carrier signal with modulated amplitude. The natural PAM is susceptible to noise. When
the signal is passed through an LPF, it cannot recover the signal without distortion. Hence
to avoid this noise, flat-top sampling is preferred. Flat-top sampling is the process in which
sampled signal can be represented in pulses for which the amplitude of the signal cannot be

changed with respect to the analog signal, to be sampled. The tops of amplitude remain flat.

3.4. Channel Model

Noise is inherently present in real channels due to which a system that does not account
for this noise is of little use in the real world. For the design of any part of a communication
system, a proper channel model is a must and AMC is no exception to this. Various prob-
abilistic and statistical models have been developed for channel modeling, as described in

[17], throughout the years which can be represented as given in figure 3.5:
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Figure 3.5: A Probabilistic Channel Model

Here, x is the input to the channel and y is the output that we observe from the channel.
The channel can now be thought of as a system that assigns probabilities to all kinds of output
that can be observed by the receiver given a certain input. These probabilities are dependent
on the input to the channel. We assume the noise in the channel is to be additive i.e, If ()

is the input signal to the channel, then the output of the channel y(t) will be given by:
y(t) = x(t) + 2(t) (3.1)

where, z(t) is the additive noise. We also assume that the additive noise z(t) is white noise
and has a Gaussian distribution in time. This is commonly known as the Additive White
Gaussian Noise (AWGN). The AWGN has zero mean and a power spectral density of Ny /2.
The AWGN model has been used widely throughout the years because of its simplicity and
as a good assumption of noise in a channel. It has provided good performance in modulation
classification, especially for various wired communication channels.

To accommodate for wireless channels, we also add the effects of multi-path propa-
gation and signal attenuation. This model is known as the multi-path fading channel. It is
generally represented as a linear time-variant system, i.e, the properties of the channel vary
with time. Mathematically, the multi-path fading channel can be represented as given in the
equation 3.2:

y(t) = a(t)e®Da(t) + 2(t) (3.2)

where fj is the frequency offset. It is a multiplicative channel model where the time
dependent factor a/(t)e’?® represents the time varying channel gain and the phase offset due
to the channel. Furthermore, we can also consider the frequency offset of the channel which
is caused by the movement between the receiver and the transmitter due to the Doppler effect.

The full channel model can now be expressed as given in the equation 3.3:

y(t) = (T D (e) 1 (1) (3
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By utilizing these channel models we can make our classifier robust to the various

unknown changes that occur in the physical world.

3.5. Spectrogram

A spectrogram is a visual representation of a signal’s signal strength across time at
various frequencies included in a waveform. It is two dimensional graph with colors acting
as the third dimension. Along the horizontal axis, time passes from left to right. The third
dimension, color, represents the amplitude of a certain frequency at a given moment. Music,
linguistics, sonar, radar, speech processing, seismology, and other fields use spectrograms
extensively.

The time representation is the one way to describe a signal and the frequency repre-
sentation is another significant way to describe a signal. Neither the time representation nor
the frequency representation, on the other hand, could tell us when the frequencies occur. As
aresult, TFR (Time-Frequency Representation) method was developed which is a combina-
tion of time and frequency bridging the gap between time and frequency representation. The

Short-Time Fourier Transform (STFT) is an intuitive and simple method of TFRs [18].

3.6. Likelihood Ratio Test

The likelihood is the measure of how accurately the given data fit a model with a certain
set of fixed parameter values. The likelihood function is a function that is used to calculate
the likelihood for a given data. Let X be a random variable that represents the observed data
and 6 be the set of parameters used in our model. Then, the likelihood of observing the data

@ is denoted by f(x; 0) and is given by:

f(:6) = Po(X = ) (3.4)

where, Py(X) represents the probability density function parameterized by 6.

The likelihood ratio test is a statistical test for performing hypothesis testing by com-
paring the likelihood of the data under different hypotheses. Let f(x|H,) be the likelihood
of the observed data « under the hypothesis H, and the f(x|H;) be the likelihood under
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hypothesis ;. Then, the likelihood ratio is given by:

M) = J(x|H) (3.5)

[ (x| Ho)

If my and 7, be the priors of Hj and H; i.e, the probability of observing hypothesis H|

and H, respectively, the ratio of the priors is denoted as:

=10 (3.6)

T
Then, the decision is made as follows:
1. If A(x) > k, then accept H;.
2. Otherwise, accept H,.

In the case that both priors are equal, i.e., both hypotheses have an equal chance of

appearing, then x = 1, and the above decision condition is reduced to the following:
1. if f(x|H,) > f(x|Hy), accept H;.
2. Otherwise, accept H,.

In the average likelihood ratio test, the likelihood under a given hypothesis is averaged
over the unknown quantity. It provides maximum classification accuracy when the distribu-

tion of the unknown quantity coincides with the actual underlying distribution.

3.7. Deep Learning

Deep learning is a type of machine learning technique or a subset of machine learning
that has deeper layers of neural networks. These neural networks attempt to simulate the
working of human brains by processing, analyzing, and making cognitive decisions based
on the observed input data in such a way that the precision and decision-making ability of
these models increase with time.

Deep learning neural networks are the type of network that tends to higher-level fea-
tures extractions from the raw input. These models are trained by using a large set of labeled
data and neural network architectures that contain many layers. Deep learning models can

achieve state-of-the-art accuracy, sometimes exceeding human-level performance. In today’s
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world, it is a key technology behind automatic driving cars, enabling them to recognize a stop
sign or to distinguish a pedestrian from a lamppost and voice control in consumer devices

like phones, tablets, and TVs.

3.7.1. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a type of Artificial Neural Network architec-
ture that is used to extract spatial information from the given set of inputs. Spatial informa-
tion is the positional pattern or relationship in the input space. The convolution operation of
input with a finite-sized kernel results in the extraction of local spatial information.

Convolution is a mathematical operation on two functions that gives the amount of
overlap as one of the functions is flipped and shifted across the other function. Mathemati-

cally speaking, we have, the convolution of two functions f(¢) and g(¢), denoted by (f*g)(t)

is given by: N
S0 = (fx9)®) = [ faglt = a)da (37)
For discrete-time functions and signals we can rewrite same convolution operation as:
k=00
sln) = (fxg)lnl = Y flnlgln — k] (3.8)
k=—o0

In the field of deep learning, the first function of the convolution operation is known
as the input whereas the second function is referred to as the kernel, and finally the output
as the feature map. The input to a CNN can be a signal of multiple dimensions i.e. audio
(1D), image (2D) and medical images (3D). The kernel also can be of multiple dimensions
according to input. This is in contrast to the single dimensional convolution that we have
seen in equations 3.7 and 3.8.

The typical operation performed between input and kernel in a neural network is not
exactly convolution but instead is cross-correlation. Cross-correlation is the measure of simi-
larity between 2 signals and differs from convolution in that there is no signal flipping before
the application of multiplication and summation.

In CNN, the neural network is designed to learn the kernels based on the input image
and output labels. The kernel learned by a neural network using cross-correlation will just

be a relatively flipped version of the kernel learned by a neural network using convolution.
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Hence, it does not make much difference if either of the operations is used. Most neural
network implementations use cross-correlation as the operation. From hereon the use of
the word convolution refers to the one done in CNNs i.e. cross-correlation unless explicitly

specified. The overall operation is illustrated in Figure 3.6 [19].

Input
Kernel
c d
w T
g h
Y z
1 J k l
v Output
_...
aw + br + bw + cx + cw + dr +
ey + [z fy + gz 9y + hz
ew + fzxr + fw + gx + gw + hzx +
1w+ Jz jy + k=z ky + Iz

Figure 3.6: Convolution operation

The amount of shift that the kernel goes through before the next multiplication and
summation is known as a stride. A larger stride corresponds to lower computational com-
plexity at the cost of the lower resolution of feature map whereas a smaller stride corresponds
to greater detail of feature extraction with increased computation complexity.

Since only a few local inputs are matched to a single output sample of the feature map,

a CNN is computationally more efficient than the Fully Connected Neural Network. Whilst
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saying that, if the depth of the convolutional feature extraction increases, the receptive field
of a single output neuron vastly increases. The receptive field of a neuron is the portion of the
input from which any amount of information is flowing into the neuron. This is illustrated in
Figure 3.7 [19]. So, we can create a feature extracting, computationally better neural network

without losing the accuracy with the help of a CNN.

) @ L &)
O8O
O ©

Figure 3.7: Sparse connection and Increasing receptive field with depth.

A typical convolutional layer consists of 3 discrete steps: the convolution step, the
detector step, and the pooling step. In the convolution step the input is convoluted with the
kernels; in the detector step the output is passed through a non-linear activation function
and in the pooling step the dimension of the feature map is reduced as required by replacing
a bunch of values with a statistical summary of these values (max, average). The layer is

illustrated in Figure 3.8 [20].
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Figure 3.8: Illustration of a convolutional layer

3.7.2. Recurrent Neural Network (RNN)

Unlike most of the deep-learning models, the RNN is a DL. model with the concept that
not only encapsulates the working mechanisms of other typical DL. models but also incorpo-
rates the feature of processing the sequential inputs and the recurrent data structures. Instead
of connected neurons in traditional DL models, the RNNs have chained memory cells that
possess activation functions. Each of these nodes or the memory cells is interlinked with
each other such that each one of the cells passes on some weight of current or the previous
input to the preceding cell. Hence these idea allows holding the past information for process-
ing the current input and somewhat ensures to capture of the long-range time dependencies
of the input data making it extremely useful in areas like NLP, audio/video processing, and
so on, that have a sequential flow of data and somehow require the knowledge of prior inputs.
This model also benefits from reduced network size and computational cost due to its shared
parameters across different time-steps in the architecture.

On the basis of input and output data sequences, the RNNs can be classified into vari-

ous types as shown in figures 3.10, 3.11, 3.12, and 3.13.
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Figure 3.10: Many to many Type I RNN architecture
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Figure 3.11: Many to many Type II RNN architecture
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Figure 3.12: Many to one RNN architecture
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Figure 3.13: One to many RNN architecture

Here, Figure 3.9 depicts the actual architecture of the RNN model where w,, w,, and
wy, are the input, output, and cell weights respectively. They are also the shared parameters
across the model such that each type of weight matrices possesses the same value for each
of the cells in the particular model. On unfolding this model we get to look deeper into the
linkage of the cells and the type of processing as per the data sequences as shown in Figures
3.10, 3.11, 3.12, and 3.13. RNNs adversely process very long sequences if configuring the
activation functions tanh or rectified linear unit (ReLU) where the function outputs zero with

any negative input. A deeper peek into the individual cell of RNN is shown in 3.14.
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Figure 3.14: RNN cell architecture
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As mentioned above, RNN is a derivation of feed-forward networks that are especially
focused on modeling sequential data. For the recurrent sequence modeling, prior knowledge
of the input stream is required. Thus each cell in this model acts as a memory cell where the
state of the previous state hy_; is fed to the next cell along with the input x; which produces
the output for the corresponding cell as y; along with the state of the cell h, that will be fed
to the preceding cell along with the input. Since these memory cells are not backed up and

are limited to only a short period RNNs have certain criteria:
1. Incompatible with the variable length sequence
2. Long term dependencies
3. Requires maintenance info about the order
4. Shared parameters across the sequence

Along with these criteria, RNNs also face rapid fluctuations in the gradients. These
fluctuations in the gradients are either exploding gradient problems or vanishing gradient
problems. To overcome and compensate for these conditions, various techniques can be
applied such as changing activation functions, random initialization of weight matrices, or

change in the architecture of the cells.

3.7.2.1. Long Short Term Memory (LSTM)
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Figure 3.15: LSTM cell architecture
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LSTM is an architecture, of the RNN model that allows long-term dependency track-
ing. This approach in RNN is the third technique i.e change in the architecture of the cells
that offer effective modeling of sequential data, omit vanishing gradient problems, and main-
tain long-term dependency. Few changes are made in the existing architecture of the cell by
designing them as complex recurrent units.

LSTM is also known as a gated cell since few gates are added to the existing model
of the RNN cell. These added gates put on four new features to the RNN’s cell i.e STORE,
FORGET, UPDATE, and, OUTPUT. The STORE gate only stores the relevant information
to the cell state whereas FORGET gate erases the irrelevant information from the past. The
UPDATE gate maintains the separate value of the cell state and updates accordingly. Finally,
the OUTPUT gate passes the inputs along with prior cell states and biases through the acti-
vation function. For these features, four new gates are added which are: forget gate(ft), input
gate(it), cell candidate(gt) and, output gate(ot).

The architecture of LSTM regulates the information flow in the storage of the cell along
with a better grip for longer-term dependencies. Since separate cell states are maintained and
gate control mechanisms are implemented, this allowed the back propagation through time
with uninterrupted gradient flow. Thus, the vanishing gradient problem is overcome due to

the uninterrupted gradient flow by maintaining the cell state.
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3.7.2.2. Bidirectional Long Short Term Memory (Bi-LSTM)
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Figure 3.16: Bi-LSTM architecture

Bi-LSTM is an extension of traditional LSTM where two blocks of LSTM are placed
parallel forming a single cell of Bi-LSTM such that one LSTM cell takes the input in a
forwarding direction and the other one takes in the backward direction. This model processes
the sequence input by enabling additional training by traversing the input twice which gives

deep features from the lowest level to the highest level from large a data-set.

3.7.2.3. Attention Layer

The attention layer simply implements the idea of the word “attention”. This layer
implements the basic idea of attention i.e selectively focusing on a few specific features
while ignoring other information or concentrating on relevant information. Primarily the
thought of attention layer was introduced to overcome the initial encoder and decoder-based
neural machine translation system in NLP where the bottleneck between the two parts i.e,
encoder and decoder side faced a lot of data loss as well as increased complexity and error
for variable or long sequence data.

Attention is proposed as a method to both align and translate. Alignment is the problem

in machine translation that identifies which parts of the input sequence are relevant to each
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word in the output, whereas translation is the process of using the relevant information to
select the appropriate output. In this layer, instead of encoding the input sequence into a
single fixed context vector, the attention model develops a context vector that is filtered
specifically for each output time step thus eradicating the need for long term dependencies

and focusing only on the specific input features without having to track it backward.
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Figure 3.17: Attention layer architecture in Bi-LSTM

3.8. Quantum Neural Networks

Quantum computing is the implementation of working of quantum physics to replicate
similar phenomena in ways of computing. This type of computation encapsulates the col-
lective properties of quantum states, such as superposition, interference, and entanglement.
Quantum computers have qubits instead of bits to run multidimensional quantum algorithms.
Unlike the classical bit which can possess either 0 or 1 value at a time, the qubits can have
any state in between these values. They have the ability to be put into a superposition and

share entanglement with one another. Due to these features, quantum computers can perform
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quantum operations that are difficult to emulate at scale with classical computers. Due to the
ability to compute the complex algorithm with extremely fast speed quantum computers can
help achieve results that are not possible to chive with classical computers.

Quantum neural networks are computational neural network models influenced by the
phenomena observed in quantum mechanics. Typical research in quantum neural networks
involve combining classical artificial neural network models with the advantages of quantum
information in order to develop more efficient algorithms.

For the realization of these algorithms, Qiskit or Cirq are used. Qiskit is open-source
software development kit for working with quantum computers at the level of pulses, cir-
cuits, and application modules. Qiskit includes a comprehensive set of quantum gates and
a variety of pre-built circuits such that users at all levels can use Qiskit for research and ap-
plication development. On the other hand, Cirq is a Python software library by Google, for
writing, manipulating, and optimizing quantum circuits, and then running them on quantum
computers and quantum simulators. Cirq provides useful abstractions for dealing with to-
day’s noisy intermediate-scale quantum computers, where details of the hardware are vital

to achieving state-of-the-art results.

3.9. GNU Radio

GNU Radio is a free software development toolkit that contains signal processing
blocks for creating software-defined radios and signal processing systems. Which can be
used to create software-defined radios with external RF hardware, or it can be used in a
simulation-like environment without hardware. It’s widely used to support both wireless
communications research and real-world radio systems in hobbyist, academic, and commer-
cial environments.

The GNU Radio software provides a framework and tools for developing and run-
ning software radio applications, as well as general signal-processing applications. GNU
applications are known as flowgraphs, which are a series of signal processing blocks. Dif-
ferent blocks are available which can be used to generate the modulated data. Combination
of different noise blocks, fading blocks, and so on are suitable for creating the simulated

environment whereas the different modulation blocks are used to generate modulated data.
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4 METHODOLOGY

4.1. System Block Diagram
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Figure 4.1: AMC System Block Diagram

4.2. Likelihood Based Classifier
4.2.1. Signal and Channel Model

We have used an AWGN channel with phase distortion in our model for the likelihood

ratio test as given in [21]. The model is given by equation 4.1.
rm — e (M 4 4 4.1)
where,

r(™) = Received signal vector corresponding to modulation m
s™ = Transmitted symbol vector corresponding to modulation m
1) = Phase distortion factor
w = Gaussian Noise with zero mean and variance N/2

a = vVSNR x N = Signal amplitude for the given SNR level and noise variance

Here, r and s are complex vectors, where each component, ™ and 5™ represents
k k

the IQ representation of the signal sample £ of modulation m.
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4.2.2. Signal Generation and Visualization

The algorithm GENERATE_SIGNALIs used generate the dataset to test our likelihood
based classifier. It generates a vector of received symbols that has passed through a AWGN
channel as specified by equation 4.1. First, the algorithm generates a set of all possible
symbols belonging to the modulation m and a random phase angle that will be applied to all
the symbols. It then picks a random signal from the constellation set and applies the channel
model given in equation 4.1 to the symbol. This process is carried out for the given number

of signal length n. The procedure is outlined in algorithm 4.1.

Algorithm 4.1 Signal Generation Algorithm
Input: Modulation type m, the number of signal points /& and the SNR ~ in decibels.

Output: Received signal ("™ and the phase noise parameter 1

1: procedure GENERATE_SIGNAL(m, K ,7Y)

2: M = CONSTELLATION(m)

3 a=10710

4: v =N(0,1)

5: for £ =1to K do

6: s,(gm) = Random constellation point from the constellation set M
7: ri™ = aei¥s,+ COMPLEX_NORMAL(0, N/2)

8: end for

9: return 7", )

10: end procedure

Here, CONSTELLATION is a procedure which returns a set of all the symbols that
belong to the modulation m. Also, COMPLEX_NORMAL is a procedure which returns a
complex number which follows the complex Gaussian distribution which is given in equation
4.2.

1

COMPLEX_NORMAL (1, 0%) = 7 (N (1, 0) + N (1, 0%)) (4.2)

Here, N (11, 0%) represents a Gaussian random variable with mean p and variance 0.
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4.2.3. ALRT of the data

The likelihood function used for our classifier, as given in [21], is shown in equation

4.3.

Mg — |re — aewsl(m)\Q

K
m) (r|©) — 4.
f g 2 e ~ (43)

=1

Here, m represents the modulation, r represents the received signal vector of length K

and O is the parameter vector given by:
T
o= [a " N] 4.4)

Thus, the likelihood function f™(7|@) calculates the probability that the received
signal r belongs to modulation m. Also, M (™ is the number of symbols present in modula-

tion m and s\™

represents a constellation point of the constellation set M and |z| represents
the magnitude of the complex number 2. The likelihood function (™ (r|@) for BPSK and

QPSK are as shown below:

2 — |ry — ae]wSBPSK|2
BPSK 4.5
frE(r|® H Z ¥ (4.5)
QPSK & - ‘Tk - Oéejws?PSKP 46

We assume that the received signal r has equal chances of either being a BPSK or
QPSK signal. Then, from the equal prior case of section 3.6., we say that the modulation
of the received signal 7 is BPSK if fBPK(r|@) > fPSK(y|©®) and is QPSK modulated
otherwise.

Since the parameter vector © is already known to us, they don’t have to be estimated

from the received signal.
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4.3. Deep learning based classifiers

4.3.1. Dataset

The RadioML 2016.10A was selected as the standard database for training and eval-
uating the implemented AMC classifiers. The RadioML is an open-source, synthetically
generated dataset as a part of the GNURadio Extended Universe which has been used in
various research works over the years. The RadioML 2016.10A, in particular, was selected
here for including 11 different modulation techniques while retaining a lighter file size, al-
lowing for rapid development, sharing, and evaluation of different AMC classifiers. The
dataset contains labeled received signal samples IQ samples which are synthetically created
using GNURadio after pushing the modulated signal through different mathematical channel
models. The dataset consists of 11 modulations (8 digital and 3 analog) at varying signal-
to-noise ratios. The modulations contained in the data set are SPSK, AM-DSB, AM-SSB,
BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK and WBFM. For each modulation
scheme, the signals vary in SNR levels from -20 dB to 20dB with the step size of 2db. And
each of the SNRs in a particular modulation scheme consists of 1000 signals; each one com-
prising 128 complex floating-point time samples stored in form of Inphase and Quadrature
phase samples. This results in a matrix of (2 x 128) samples for each signal and a total of

(11 x 21 x 1000) i.e. 231000 signals. The entire dataset is 640.92 MB in total.

4.3.2. C(lassification using CNN networks

CNN based classifier for Automatic Modulation Classification was first proposed by
O’Shea et al. in [6]. CNN-based classifiers exploit the spatial relations in the constellation
diagrams of the input data for pattern recognition. The same model from [6] is implemented
here as the baseline CNN model for performance evaluation. They use 2 convolutional layers
for feature extraction and 2 dense layers for classification. The Radio-ML architecture of [6]
is illustrated in Figure 4.2 with a dropout rate of 0.6 and a 60 — 40 train-test split of the

dataset.
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reshape_input | input:

[(None, 2, 128)] | [(None, 2, 128)]

InputLayer output:

4

reshape | input:

(None, 2, 128) | (None, 2, 128, 1)
Reshape | output:

zero_padding2d | input:
ZeroPadding2D | output:

(None, 2, 128, 1) | (None, 2, 132, 1)

convl input:

Conv2D | output:

(None, 2, 132, 1) | (None, 2, 130, 256)

4

dropout | input:
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Dropout | output:

zero_padding2d_1 | input:
ZeroPadding2D output:
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Flatten | output:

densel | input:
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Dense | output:

4

dropout_2 | input:

(None, 256) | (None, 256)
Dropout | output:

dense2 | input:

(None, 256) | (None, 11)

Dense | output:

activation | input:

Activation | output:

(None, 11) | (None, 11)

4

reshape_1 | input:

(None, 11) | (None, 11)
Reshape | output:

Figure 4.2: Network architecture for Convnet.

To improve upon the classification accuracy of the CNN model, we modified the Con-

vnet model. We added a batch normalization after each convolution operation, to improve
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the generalization of the model and to reduce over-fitting in the training data.This way the
model can be further trained whilst generalizing to the testing data. Also, during training,
we removed the softmax activation at the output layer to increase the resolution of the output
for faster convergence of the model.

To summarize, we have a model with 2 convolution layers: first with 256 filters and
the later with 80 filters and both having ReLLU as the activation function. Each convolution
layer is followed by a batch normalization layer and a dropout layer with dropout rate of 0.6
and preceded by a zero padding layer. After the feature extraction by convolution layer, the
feature map is flattened and passed to a dense layer with 256 hidden units and ReLLU as the
activation function. It is also followed by a dropout layer with dropout rate of 0.6. Finally
the output layer is a dense layer with 11 nodes and no activation function. The architecture

is illustrated in Figure 4.3 and the summary is given in Table 4.1
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dense2 | input:
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dropout_2 | input:

(None, 256) | (None, 256)
Dropout | output:

 J

dense3 | input:
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Figure 4.3: Network architecture for Modified RadioML.
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Table 4.1: Summary of the modified CNN network

Input Dimension (for a single sample) | 128 x 2

Number of Layers 14

Number of epochs 100

Batch size 1024

Optimizer Adam

Loss function Categorical Cross Entropy

These architectures were trained on the entire RadioML-2016.10A. The input data to
the network are in the form of constellation diagram of dimension 128 x 2. We used a
60 — 40% split between training and testing data for training these networks. These networks
were trained for 100 epochs with a batch size of 1024 with early stopping enabled. The
Adam optimization algorithm was used along with the categorical cross-entropy as the loss

function for these networks.

4.3.3. Classification using LSTM and Bi-LSTM networks

The next approach to the AMC problem is to exploit the temporal relations in the time
sequence signal samples using RNN based classifiers. One of the implementations of the
RNN classifier is LSTM with an attention layer given by S. Hu et al.(2018) in [8]. To look at
the importance of the attention layer, we removed it from the architecture in [8]. Hence the
architecture consists of four stacked LSTM layers, and three fully connected (Dense) layers
with ReLLU activation and a final dense layer with softmax activation for classification as
shown in Figure 4.4. All of the hidden states of the first two LSTM networks are passed to
the next corresponding LSTM layer. The final LSTM layer outputs only the final state of the
layer. This output is then operated upon by the dense layers and then finally classified using

the softmax activation layer. A summary of the architecture is given in Table 4.2.
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Input Layer
128 x 2
LSTM Layer 1

LSTM Layer 2

LSTM Layer 3
1 x 32
Dense Layer (ReLU)
Dense Layer (ReLU)
Dense Layer (ReLU)
v 1 x 32

Dense Layer (SoftMax)
jrxn

Output

Figure 4.4: Network architecture for classification using LSTM.

Table 4.2: Summary of the used LSTM network

Input Dimension (for a single sample) 128 x 2
Number of Units in LSTM Layer 32
Number of Layers 7 (3 LSTM + 4 Dense Layer)

Output dimensions of LSTM Layers 1 and 2 | 128 x 32

Output dimension of LSTM Layer 3 1 x 32

Output dimension of Dense Layer (ReLU) 1 x 32

Number of epochs 100

Batch size 1024

Optimizer Adam

Loss function Categorical Cross Entropy

The original architecture from [8] uses an additional attention layer that allows weights
of input IQ signals to better track the importance of features in the identification of the mod-

ulation scheme. This architecture is taken as the standard baseline for RNN AMC model for
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performance evaluation. All the parameters of the previous model were kept unchanged. The
newly added attention layer allows us to weigh the importance of each time step of our input
data into the model, thus allowing the network to better track the more important information
regarding the modulation scheme. The overall architecture of the model is shown in Figure
4.5. Here, all the hidden states of the previous LSTM layers are passed to the attention layer.
The attention layer used contains its own weight matrix W, and a bias vector b,. If H is the
input matrix of dimension M x N to the attention layer, the output of the layer y is calculated

as:

e = tanh (HW, + b,) 4.7
o = softmax(e) (4.8)
M—1
i=0

The vector a« is commonly known as attention weights. As stated above, the matrix H is the
matrix containing all the hidden states of the previous LSTM layer, and which in our case
has the dimension 128 x 32. The matrices W, and b, have dimensions 32 x 1 and 128 x 1

respectively.
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Input Layer
128 x 2
LSTM Layer 1

LSTM Layer 2

LSTM Layer 3
v 128 x 32
Attention Layer ‘
1 x 32
Dense Layer (ReLU)
Dense Layer (ReLU)
Dense Layer (ReLU)
1 x 32
Dense Layer (SoftMax)
i1 x 11
Output

Figure 4.5: Network architecture for AMC using LSTM with attention layer

To increase the preservation of temporal information, the LSTM layers in the baseline
model were replaced with Bi-LSTM layers. The Bi-LSTM layer allows a two-way data flow
using 2 LSTM blocks. This improves performance than the uni-directional LSTM by pre-
serving past as well as future information. The increased number of LSTM blocks, in turn,
results in an increased number of parameters.The resulting architecture is similar to the pre-
vious architectures with only a slight increase in the dimensions. The Bi-LSTM architecture

is shown in Figure 4.6.
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Input Layer
128 x 2
Bi-LSTM Layer 1

Bi-LSTM Layer 2

Bi-LSTM Layer 3
'128 X 64

\
Attention Layer ‘

1 x 64
Dense Layer (ReLU)
Dense Layer (ReLU)
Dense Layer (ReLU)
1 %32
Dense Layer (SoftMax)
jrxn
Output

Figure 4.6: Network architecture for AMC using Bi-LSTM layers.

For these architectures, each of the LSTM layers consists of 32 outputs units. The
LSTM network was trained on the entire RadioML-2016.10A. The input data to the network
are in the form of sequential IQ samples and make up an input vector of dimension 128 x 2.
We used a 50—50% split between training and testing data for training these networks. These
networks were trained for 100 epochs with a batch size of 1024 with early stopping enabled.
The Adam optimization algorithm was used along with the categorical cross-entropy as the

loss function for these networks.

4.3.4. Classification using quantum neural networks

A modulation classifier based on quantum machine learning was also implemented. To
achieve this, the TensorFlow Quantum (TFQ) framework which is provided by Tensorflow
2 for quantum machine learning applications was used. The TFQ framework is based on
the Cirq quantum library which is Google’s python library for writing, manipulating and
optimizing quantum circuits.

The classifier based on quantum machine learning is derived from Tensorflow2’s ex-
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ample classifier, where it is used to classify digits from the MNIST dataset [22]. Due to the
current limitations of quantum computers, the MNIST classifier was restricted to classifying
only 2 digits (namely 3 and 6). Similarly, deu to the restrictions on the number of qubits, the
MNIST dataset had to be heavily modified in order to feed it to the quantum network. The
approach itself is based on [15], which uses one qubit to represent one pixel of the image.
Currently, only a few qubits can be simulated and run. Therefore, the image data itself was
resized down to just 4x4 pixels to get a reasonable number of qubits.

The approach to modulation classification in a quantum setting is similar to Tensor-
flow2’s example, where spectrogram images of the signals are used for classification. Sim-
ilar to the MNIST classification example, only 2 classes of modulations namely BPSK and

QPSK, are used.

4.3.4.1. Dataset pre-processing

A good amount of data pre-processing was needed before the RadioML-2016 dataset
could be successfully trained on a Quantum Neural Network (QNN). The inputs to the QNN
are in the form of quantum circuits which are designed according to the input data. The input
data 1s in the form of a 4x4 binary image, i.e, an image containing only Os and 1s. Each pixel
is represented by one single qubit and the value of the pixel (0 or 1) is used to design the
circuit for that qubit. The approach in the Tensorflow2’s example is used to prepare the data
for the QNN.

First of all, the spectrogram images of BPSK and QPSK modulations were generated
from the 1Q samples of the signals in the RadioML-2016 dataset. The spectrogram images
were then resized to a 4x4 image, which was then converted into a binary image by using a

certain threshold. The full approach is given in algorithm 4.2.
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Algorithm 4.2 Dataset Preparation for Quantum Neural Network

Input: Vector of 1Q signals x of length L and signal labels y

Output: Vector of binary images t of size 4 x 4

1: procedure PREPARE_DATA(x)

2:

3:

4:

11:
12:
13:
14:
15:
16:

17:

fori=1to Ldo
s; = SPECTROGRAM(x;)
s; = 10logy, (8:)
r; = RESIZE(s;)
end for
t = REMOVE_CONTRADICTIONS(r, y)
for i = 1 to LENGTH(¢) do
for every pixel pin¢; do

if p > THRESHOLD then

p=1
else
p=20
end if
end for
end for
return £

18: end procedure

In algorithm 4.2, each element in the input vector x is a complex vector of IQ samples.

The procedure SPECTROGRAM returns the 2D spectrogram of a complex signal. The

values of spectrogram are converted to decibel (dB) scales to get more reasonable values.

The images are then resized by the procedure RESIZE to 4x4 images. The contradictory

images are then removed from the set of resized images. Here, a contradictory image has the

same values for all its pixels but belongs to a different class. Contradictory images become

quite common when the number of pixels in the image are very low and must be removed as

they can degrade the training performance.

Once the contradictory images have been removed, we apply a threshold to the pixel

values. Any pixel value greater than the THRESHOLD will get a value of 1 otherwise it gets

a value of 0.
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Each of the binary images is then converted into a quantum circuit. Algorithm 4.3
details this procedure. Here, we generate one qubit for each pixel in an image. If the pixel
has the value 1, we pass the qubit associated with the pixel through an X gate, otherwise the
state of the qubit remains unchanged. The output after this state will be a vector of quantum

circuits for each binary image.

Algorithm 4.3 Conversion to Quantum circuit from binary image
Input: Vector of binary images t of length 7’

Output: Vector of quantum circuits C

1: procedure CONVERT_TO_CIRCUIT(%)
2: fori:=1to 7T do

3: R = QUANTUM _CIRCUIT()

4: for every pixel pin ¢; do

5: g = NEW _QUBIT()

6: if p=1 then

7: CIRCUIT_ADD(R, X(q))
8: end if

9: end for

10: Ci=R
11: end for
12: return ¢

13: end procedure

An example of this conversion of binary image to quantum circuit is given in Figure

4.7.
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Figure 4.7: Conversion of binary image (a) to its quantum circuit equivalent given in (b).
The black pixels represent a pixel value of 1.

4.3.4.2. Construction of Quantum Neural Network

The quantum neural network will take an input of 16 quantum circuits (since we have
4x4 = 16 pixels) generated from algorithm 4.3. An extra qubit, called the readout qubit, is
also added to the network. The readout qubit acts as the output qubit of the quantum neural
network.

The QNN consists of a set of 16 gates. Each of these gates take 2 qubits as input. One
of the inputs is the readout bit and the other input is one of the 16 different qubits that are
input to the neural network. The gates are also parameterized, i.e, there is a certain variable
that will control the operation of that gate. It is through these parameters that the network is
trained. The powered parity gates are used as the layer gates in the network. The powered
parity gates are two input parity gates that are raised to a certain power, which acts as the
parameters in our circuit. For example, the powered X parity gate, denoted by X X is given

by the unitary matrix in 4.10.
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(¢ 0 0 s]
0 ¢c s 0
(XX)' = (4.10)
0 s ¢c O
s 0 0 c]
where,
Tt
¢ = f cos 5
o 2gin [T
s = —je sin 5
f _ ejﬂt/Z

Two layers of X X and ZZ gates are used in the network, along with a combination of Pauli
X and Hadamard gates for the readout qubit. A sample figure of such a network having only

2 inputs is shown in Figure 4.8.

(-1, 1): X H XX XX s Zz H
| I

(0, 0): XXMox-0) ZZMzz-0)

(1, 0): KX Mx-1) ZZMzz-1)

Figure 4.8: The QNN having 2 inputs for demonstration purposes

The qubit (—1, 1) represents the readout qubit and xx-0, xx-1, zz—0, zz—1 act as
the learnable parameters of this particular neural network. The actual network used will have
16 input circuits and 32 such learnable parameters.

The circuit is then wrapped in a Parameterized Quantum Circuit (PQC) layer of Tensor-
flow. A measurement operator is also specified for the PQC layer which is used to perform
measures on the readout bit. The measurement operator used is the Z measurement gate

(also known as Pauli Z gate) given by the unitary matrix in equation 4.11.

7 = A.11)
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The Z operator has two eigenvalues +1 and —1 which corresponds to two quantum states,
the |0)state and the |1). If qubit is measured in |0)state then, the value of the operator will be
+1 and it will be -1 if the |1)state is measured. The PQC layer returns the expected value of
all the measurements made which will be a value within the interval [—1, 1]. In the context
of our classifier, a value of 1 will represent the input belonging to class of BPSK and -1
belonging to the class of QPSK.

Since the output of the network is between —1 and 1, a suitable loss function has to
be used. The loss function used in [22] is the hinge loss, which is adopt for our classifier as

well. The formula for calculating the hinge loss is given in equation 4.12.

Ly(y,y) = Zmax (0,1 —yy) (4.12)

where, the vector y are the actual labels of the input data and ¥ are the predicted labels. The
network is only trained for only 5 epochs as the size of the dataset used in training is rather

small.
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5 RESULTS AND ANALYSIS

5.1. Likelihood based classifier

5.1.1. Generated Signal

Signals of varying SNR were generated using the GENERATE_SIGNAL procedure in
algorithm 4.1 with m = BPSK or QPSK, K = 100, and the SNR parameter v varying from
—-8dB to 8dB with a step size of 2. The noise variance parameter(/N), was taken to be 1.
For each SNR level, 1000 signals were generated from which the accuracy was calculated.
The constellation plot for the generated BPSK and QPSK signals are given in figure 5.1 and
5.2 respectively.

Generated Dataset: BPSK (SNR=8)
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Figure 5.1: Generated BPSK signal with SNR of 8 dB.
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Generated Dataset: QPSK (SNR=8)
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Figure 5.2: Generated QPSK signal with SNR of 8 dB.

5.1.2. Evaluation framework for ALRT system

We need some sort of evaluation metric to see the performance of our system and also
to compare the results at various levels of SNRs.

Since the overall system itself is custom tailored, with multiple subsystems required to
calculate likelihood of the given signal, we used simple accuracy calculation as the evaluation
framework of the system.

We pass random signals with modulation label m to the system and count the number
of the signals the system rightly classifies as m modulated signals. The accuracy of the
system for that specific modulation type, denoted by 7" is calculated as the ratio of rightly

classified signals to the total number of signals input.

n(m)

(m) —
1" = (5.1)
where, n(™ is the number of signals rightly classified as m modulated by the system

and N(™ is the total number of m modulated signals passed to the system The overall accu-
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racy of the system () is calculated by taking average of modulation specific accuracy over

all the available modulation types, L.
- _ (4)
n—LEW (5.2)

5.1.3. Results

The accuracy plot of the ALRT classifier for BPSK and QPSK modulation for various
SNR levels is shown in figure 5.3. Here, the accuracy of the classifier gradually increases as
we increase the SNR of the generated signal. Above SNR of 0dB, the ALRT gives almost

perfect accuracy, correctly classifying almost all the signals.

ALRT Classification: SNR vs Accuracy
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Figure 5.3: SNR vs. Accuracy plot for the ALRT classifier
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ALRT Classification Confusion Matrix
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Figure 5.4: Confusion matrix for the ALRT classifier

5.2. Deep Learning Based classifiers

5.2.1.

Evaluation Framework

The usual evaluation frameworks used for DNN are employed to measure and evaluate

the performance of DL based classifiers. These include the epochs vs loss plot and confusion

matrices. Specifically, we use two kinds of confusion matrices to evaluate our classifier.

One is the overall confusion matrix which is generated by considering the accuracy of our

classifier over all the signals over all the possible SNRs. Mathematically, the elements of

this confusion matrix P are given by:

(M;)
;
Pij = Pr (g; = Milzs = M;) = NG (5.3)
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where, 1; is the predicted modulation type for an input signal x;. M is the set of all mod-
(M;)

ulations that are classified by our model. Here, n, is the number of signal classified as

(M3) is the total number of signal

modulation M; which have a modulation of M; and N
with actual modulation M.
The overall accuracy (1) of the models is calculated by taking the ratio of the number

of correctly classified signals to the total number of signals.

M9
n= —Z e (5.4)
Here, nEM") is the total number of correctly classified signals of modulation M, and NM:)

is the total number of signals belonging to modulation M.
The second confusion matrix is generated by considering the accuracy of our classifier
over signal having a specific value of SNR. Mathematically, the elements of this confusion

matrix Q;¥ is given by:
Qz(;k) = Pr (; = M;|x; = M, and SNR(z;) = sy,) (5.5)

Finally, we have the SNR vs Accuracy plot which gives us the accuracy of our classifier with
respect to the SNR level of the incoming signal. It is simply the plot of overall accuracy given
by the second confusion matrix and its SNR level. The probability of correctly classifying
the input signal of a certain modulation type is the accuracy for that modulation type for
a given SNR. Mathematically, the accuracy of classification of modulation M, for a given
SNR sy, is:

Acc(sk, M;) = Pr (y; = M;|x; = M, and SNR(x;) = sy) (5.6)

The total accuracy for a given SNR level is calculated by taking the ratio of number of

correctly classifier inputs to total number of signals.

(Mi,sg)
L

ACC(Sk) = W (57)

(Mi,s1)

i

SNR s;, and NMisk) s the number of signals of modulation M; of a given SNR s;.

where n is the number of signals of modulation M; classified correctly of a given
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5.2.2. Dataset

Some of the signal samples from the RadioML dataset were visualized as a constella-

tion diagram. The results are given in Figure 5.5.
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Figure 5.5: Plot of various signals contained in the RadioML dataset.
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5.2.3. Results: CNN based classifiers

The training performance of RadioML CNN network and modified CNN is displayed
in the Figure 9.1 and Figure 9.2 respectively. The SNR(dB) vs Accuracy Plot is also given
below which shows that the accuracy of the model increases as the SNR level increases and
tends to constant at positive SNRs. The overall accuracy of these models are 7;, = 51.31%
and 7, = 54.84% of RadioML CNN and modified CNN respectively.

This model somewhat performs poorly for QAM and AM-SSB modulation types. The
confusion matrix for these models is shown in Figure 5.6 and Figure 5.8 respectively. Also
the confusion matrix for these two CNN based models for different SNR levels are given in

the Figure 10.1 and Figure 10.2.

Table 5.1: Accuracy for different SNR level for RadioML CNN network

SNR Level (dB) | Accuracy(%)
-10 22.51
-8 33.896
0 68.65
4 74.73
16 77.00
18 75.96
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Figure 5.6: The overall confusion matrix for the RadioML CNN network.
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Figure 5.7: Plot of SNR (dB) vs Accuracy for the RadioML CNN network.

Table 5.2: Accuracy for different SNR level for Modified CNN network

SNR Level (dB) | Accuracy(%)
-10 19.36
-8 31.18
0 72.44
4 78.36
16 82.59
18 80.95
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Figure 5.8: The overall confusion matrix for the Modified CNN network.
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Figure 5.9: Plot of SNR (dB) vs Accuracy for the Modified CNN network.

5.2.4. Results: RNN based classifiers

5.2.4.1. LSTM based classifier

Google Colab and Tensorflow was used to train and validate the LSTM and Bi-LSTM
based models. The training performance of our LSTM based network is given in Figure 9.3.
Here, we see that the training loss is gradually decreasing and finally settling to a value of
1.64683. The early stopping employing during training then stopped further training on the
network. The overall confusion matrix is shown in Figure 5.10. The overall accuracy of this
model is n;, = 37.33%.

The LSTM only classifier performs somewhat poorly and has a tendency to classify the
input signals as AM-SSB. There is a very high degree of confusion for WBFM modulation
type. The confusion matrices for various SNR levels results are given in Figure 10.3. Here,
we see that the performance of our classifier gradually improves with the SNR level as the
diagonal of the confusion matrix becomes more and more prominent with the increasing
SNR level.

Finally, we have the SNR vs Accuracy plot given in Figure 5.11. For lower SNRs,
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the classifier is very inaccurate. However, the accuracy is greatly increased for higher SNR

levels. Some of the values of accuracy for SNR levels are given in Table 5.3.

Table 5.3: Accuracy for different SNR level for LSTM based network

SNR Level (dB) | Accuracy(%)
-10 15.70
-8 20.92
0 A7.76
4 53.72
16 54.29
18 54.49
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Figure 5.10: The overall confusion matrix for the LSTM based network
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Figure 5.11: Plot of SNR (dB) vs Accuracy for the LSTM based network

5.2.4.2. LSTM with attention layer

The training performance of the LSTM based network with attention layer is given
in Figure 9.4. Here, the training performance curve decreases more sharply than previous
LSTM model. The value of loss of our network is also lower, about 1.5. The overall confu-
sion matrix and the confusion matrices for different SNR levels are given in Figure 5.12 and
Figure 10.4 respectively. The overall accuracy of this model is found to be 7,4 = 46.68%.
The overall confusion matrix shows that this model is much more accurate than the previ-
ous LSTM model. There is still a large amount of confusion for the modulation types of
QAMI16, QAM64, QPSK and WBFM, as noticed by the larger spread of the data over the
respective column. The confusion matrices for different SNR levels also tell a similar story,
with the classifier becoming more and more accurate as the SNR level increases. The SNR
vs Accuracy plot is given in Figure 5.13. The accuracy values for some SNR levels are given
in Table 5.4. This model achieves a higher accuracy than the previous model at medium to

high values of SNR.
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Table 5.4: Accuracy for different SNR level for LSTM based network with attention layer
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Figure 5.12: The overall confusion matrix for the LSTM based network with attention
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Figure 5.13: Plot of SNR vs Accuracy for the LSTM based network

5.2.4.3. Bi-LSTM network

The training performance, overall confusion matrix and the confusion matrix for differ-
ent SNR levels for the Bi-LSTM network with attention layer are given in Figure 9.5, Figure
5.14 and Figure 5.15 respectively. We see that the drop in training loss is much steeper than
that for previous RNN models. The training loss is also much lower reaching values of about
1.1038. The model is very accurate, having the overall accuracy of 1z; = 56.88%. This can
also be observed through the confusion matrix where the diagonal values are much higher
than that for the previous networks. A similar trend can be observed in the confusion ma-
trices for each SNR level, where the accuracy is very high for high SNR levels. The total

accuracy values for some of the SNR levels are given in Table 5.5.
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Table 5.5: Accuracy for different SNR level for Bi-LSTM based network with attention layer
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Figure 5.14: The overall confusion matrix for the Bi-LSTM based network with attention
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Figure 5.15: Plot of SNR vs Accuracy for the Bi-LSTM based network

5.2.5. Quantum Neural Network based classifier

The QNN was trained in Google colab using Tensorflow2. The quantum circuits were
created using Cirq, Google’s quantum computing framework. The training performance,
confusion matrices and SNR-vs-Accuracy plots are given in figures 9.6, 5.16, 10.6 and 5.17
respectively. Here, we can see that the QNN based classifier performs somewhat poorly
in comparison to other classification discussed previously. The total overall accuracy of
the QNN based network is only 55.72%. There is also a lot of confusion in classification
of BPSK signals as we observe from the confusion matrix that the majority of the BPSK
signals are being classified as QPSK signals. The trend in SNR-vs-Accuracy is similar to
that of other classifiers with accuracy increasing with increasing SNR. The accuracy values

for some of the SNR are given in the table.



Table 5.6: Accuracy for different SNR level for QNN

SNR Level (dB) | Accuracy(%)
-2 50.85
0 51.78
2 55.93
4 58.89
8 60.88
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Figure 5.16: The overall confusion matrix for the QNN based classifier.
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Figure 5.17: Plot of SNR (dB) vs Accuracy for the QNN based classifier.

Though having appreciable accuracy, the resource restriction due to lack of number of

available gbits makes QNN not a viable solution of AMC problem,; at least for now.

5.2.6. Analysis of Results

A comparison of SNRs of the classifier is given in Figure 5.18. Here, we see that
the LSTM network has the least accuracy across all SNRs. The overall accuracy of this
model is 37.33%. The LSTM network with an attention layer has better accuracy than the
LSTM network whose overall accuracy is found to be 46.68%. The RadioML, Modified
CNN, and the Bi-LSTM network provide better accuracy across all the SNRs whose overall
accuracy are 51.31%, 54.84% and 56.88% respectively. Besides these, the QNN also has
good performance giving an accuracy of 55.72%. The graph below shows the accuracy of

all the DL models for different SNR levels.
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Figure 5.18: Comparison of SNR and Accuracies for different classifier

Among all the approaches implemented, the likelihood ratio test has the highest ac-
curacy of 100% for positive SNRs. This 100% accuracy can be attributed to the perfect
knowledge of channel state and the limited modulation scheme used in the input data. How-
ever the time and space complexity of this approach is very high due to heavy mathematical
computations required for each signal. This fact along with unreal requirement of chan-
nel state knowledge make the implementation of ALRT far less practicable than the deep
learning-based techniques.

In the modified CNN addition of batch normalization and the removal of softmax ac-
tivation output layer resulted in higher accuracy of 83.27% (8dB) in comparison to baseline
RadioML CNN model with accuray of 77.10% (12dB). This increase in accuracy can be
linked to increased generalization and faster convergence due to architectural changes.

In case of RNN, the removal of attention layer resulted in poorer accuracy of 55.54%
(10dB) in the LSTM model than the baseline model: LSTM with attention with accuracy of
71.71% (20dB). This decrease in accuracy can be attributed to removal of attention layer due
to which all the input samples were accounted equally regardless of their importance.

The Bi-LSTM model drastically increases the accuracy to 84.48% (14 dB) . This in-
crease in accuracy can be attributed to increased number of parameters because of additional

LSTM block; which can track the future information (reverse direction in time) in addition
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of past information.

We also computed the average time taken to perform prediction by each model whose
results are given in Figure 5.19. The tests were all run on Tensor Processing Unit (TPU)
provided by Google collab. Here, we see that the prediction time for a single sample is
similar across all the models with little variations. The time maximum time taken for the
single sample prediction is maximum for the Bi-LSTM model and the fastest among all with

the minimum time is by the LSTM with attention layer model.

Time taken for predictions
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Figure 5.19: Comparison of average time taken to perform a single prediction.
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6 CONCLUSION

In this project, we have look at various approaches towards the AMC problem. We
performed the classification of various modulation types using various likelihood based clas-
sifiers, deep learning based classifiers and even QNN based classifiers. The likelihood based
classification was done by computing the likelihood signal and then classifying based on
which modulation type has the highest likelihood. The deep learning based classifiers in-
volved passing the signal data through a neural network from which the most probable mod-
ulation type is extracted. Different neural network architectures were tested namely the
RadioML CNN architecture and its modified version, LSTM networks with/without atten-
tion and also a Bi-LSTM network. We also trained and tested a Quantum Neural Network
based classifier which was able to classify BPSK and QPSK signals with an accuracy of upto
60.88% at an SNR of 8dB.

The lack of computation power of present quantum computers make QNN infeasible
for AMC solution at present. The likelihood based approach require a perfect knowledge of
channel which is infeasible in real life. The QNN and likelihood based approaches are hence
not viable solutions of AMC leaving DL based approach as a realistic alternative.

All of the DL based models implemented here were able to produce ac curacies above
50% at SNR levels greater than 2dB. The Bi-LSTM network with attention layer outperforms
all the other DL based models with a maximum accuracy of 84.48% (14dB) and not much

increase in average prediction time to 0.041 ms for a signal.
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7 LIMITATIONS

p—

The approaches used in our project show better performance only for higher values of

SNR.

The optimal model was chosen solely based on the testing performances. The cost
and complexity of implementing these models on a lower powered edge devices are
not considered. Furthermore, the complexity of architecture will also highly impact
the prediction times on those devices. Thus, the chosen model might not be the most

optimal when implemented on an edge device.

. Only number of layers and number of nodes were considered for hyper-parameter

tuning.

. The RadioML dataset used for training and testing the models are synthetic i.e they

are generated form software simulation and not from a real world source.

. Complex architectures like vision transformers, encoder-decoder have not been ex-

plored.
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8 RECOMMENDATIONS

The main purpose of this project was to explore and evaluate various approaches to-
wards AMC. We implemented some of the suitable solution for of these approaches. We also
compared their performances based on model accuracy and prediction times and selected the
best model for developing a classifier. Few enhancements and further research that can be

done for bettering these results are listed below:

1. Use of a dataset containing collection of real-world received signals, instead of syn-

thesized signals for the training and using more sophisticated hyper-tuning.

2. Reducing time and space complexity of these models to make it feasible for edge de-
vices such as Software Defined Radios (SDRs) in adaptive modulation communication

scheme.

3. Preprocessing input data to increase classification accuracy such as conversion to spec-

trum.

4. We have chosen our optimal classifier purely based upon the testing performance met-
rics. Alternatively, the optimal classifier can also be chosen by measuring the cost,

complexity and performance measurements on edge devices.

5. Various other deep learning models like autoencoders, reinforcement leaning can also
be considered for a even more comprehensive study of approaches towards AMC prob-

lem.

6. The possibilities of using other types of parameterized gates for encoding qubits with
acutal values of spectrogram instead of Os and 1s can be further explored. Similarly,

other types of layer gates can also be experimented on to achieve different results.
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APPENDIX A: TRAINING AND VALIDATION LOSSES

Training performance

2.9 4 || === Training Loss
1 —— Validation Error
1
I
2.0
1.8 1
n
3
A
1.6 1
1.4 1
1.2 1
0 20 40 60 80 100
Epochs

Figure 9.1: Training and Validation Loss for the RadioML CNN network.
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Figure 9.2: Training and Validation Loss for the Modified CNN network.



Training performance

2.2
A === Training Loss
Validation Error
2.1
2.0 1
S1.91
1.8 1
1.7 1
0 5 10 15 20 25 30 35
Epochs
Figure 9.3: Training and Validation Loss for the LSTM based network
Training performance
\\ === Training Loss
\ —— Validation Error
2.2 1
2.0 A
B
Q
=
1.8 1
1.6 1
1.4 T T T T T
0 10 20 30 40
Epochs

Figure 9.4: Training and Validation Loss for the LSTM network with attention
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APPENDIX B: CONFUSTION MATRICES FOR EACH SNR LEVEL
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